2 March 2019; Feast of Bl. Charles the Good

 

Fortran output file of calculation of the Strong Nuclear Force α:

 Strong Nuclear Force α is calculated at Transcendental Constant count 1 at X-axis.

 

NEW EXPM1 ( -662.43856148714610 , 508.30698610704684 )

NEW EXPM2 (-9.61101601082511034E-004,-7.37479196700399110E-004)

NEW EXPM3 ( 6.3213343966978304 , 6.8766461604538156 )

NEW FT ( 1.5499611637150190 , 2.3889192598715847 )

EXPONENT MAIN ( 6.3213343966978304 , 6.8766461604538156 )

NEW EXPP ( 9.05660929075733680E-003,-9.85220739762643523E-003)

NEW ALFA_MINUS_HALF ( 0.96862168056689812 ,-7.54911823479028667E-003)

FT VALUE AT X ( 1.5499611637150190 , 2.3889192598715847 )

EXPONENT PARTIAL ( 9.05660929075733680E-003,-9.85220739762643523E-003)

 

ALFA MINUS 1/2 ( 0.96862168056689812 ,-7.54911823479028667E-003)

 

ALFA SQUARE ( 0.93817097087811951 ,-1.46244791827615708E-002)

 

The complex result of the Strong Nuclear Force Constant αs :

ALFA ( 1.0656448508282326 , 1.66115787216988761E-002)

 

REAL PART OF ALFA 1.0656448508282326

 

IMAGINARY PART OF ALFA 1.66115787216988761E-002

 

POLAR PART OF ALFA 1.0657743159995710

 

Strong Nuclear Force  α:

MODULUS (OF POLAR FORM) 1.0657743159995707

An educated guess of the strong nuclear force constant is:

αS approx = 1

 

ANGLE THETA OF COMPLEX NUMBER (ARGUMENT) 1.55870254487598375E-002 

ANGLE THETA OF COMPLEX NUMBER (ARGUMENT) IN DEGREES 0.89307077337694674

 

Comments powered by CComment