2 March 2019; Feast of Bl. Charles the Good
Fortran output file of calculation of the Strong Nuclear Force αs :
Strong Nuclear Force αs is calculated at Transcendental Constant count 1 at X-axis.
NEW EXPM1 ( -662.43856148714610 , 508.30698610704684 )
NEW EXPM2 (-9.61101601082511034E-004,-7.37479196700399110E-004)
NEW EXPM3 ( 6.3213343966978304 , 6.8766461604538156 )
NEW FT ( 1.5499611637150190 , 2.3889192598715847 )
EXPONENT MAIN ( 6.3213343966978304 , 6.8766461604538156 )
NEW EXPP ( 9.05660929075733680E-003,-9.85220739762643523E-003)
NEW ALFA_MINUS_HALF ( 0.96862168056689812 ,-7.54911823479028667E-003)
FT VALUE AT X ( 1.5499611637150190 , 2.3889192598715847 )
EXPONENT PARTIAL ( 9.05660929075733680E-003,-9.85220739762643523E-003)
ALFA MINUS 1/2 ( 0.96862168056689812 ,-7.54911823479028667E-003)
ALFA SQUARE ( 0.93817097087811951 ,-1.46244791827615708E-002)
The complex result of the Strong Nuclear Force Constant αs :
ALFA ( 1.0656448508282326 , 1.66115787216988761E-002)
REAL PART OF ALFA 1.0656448508282326
IMAGINARY PART OF ALFA 1.66115787216988761E-002
POLAR PART OF ALFA 1.0657743159995710
Strong Nuclear Force αs :
MODULUS (OF POLAR FORM) 1.0657743159995707
An educated guess of the strong nuclear force constant is:
αS approx = 1
ANGLE THETA OF COMPLEX NUMBER (ARGUMENT) 1.55870254487598375E-002
ANGLE THETA OF COMPLEX NUMBER (ARGUMENT) IN DEGREES 0.89307077337694674
Comments powered by CComment