20 August 2019 AD; St Bernard of Clairvaux

 

Fortunately, there is a way of getting all the CP Violation Phase Angles. When you look closely at CP Violation Phase Angles of Neutrino and Quark ( known to science ), and the sum of all the angles ( 3 + 3 ) for each category ( i.e. for Quarks, Neutrinos, and then for Bosons and Gravitons ), you can notice the order in their relation.

1. Starting with Neutrino:

 

δ CP Neutrino X ( 3 / 2 ) = Σ Neutrino Angles ( sum of Neutrino Angles ) + Σ Quark Angles ( sum of Quark Angles ) 

( 232.20881 deg = 4.05281 rad ) X ( 3 / 2 ) = 348.31322 deg = 257.8801 deg + 90.47056 deg

348.31322 deg approx = 348.35066 deg

Left-Hand Side approx equals to Right-Hand Side

So, this is the first triplet - CP Neutrino and the Sum of Neutrino and Quark ( they go together for some reason ). 

 

 

2. Quark:

 

δ CP Quark X ( 3 / 2 ) = approx Σ Boson ( CP Angle for Quark equals to the sum of the angles for Boson)

( 68.77852 deg = 1.200412 rad ) X ( 3 / 2 ) = approx 102.8371 deg

103.16778 deg = approx 102.8371 deg

This pair is a relation of CP Quark and the sum of Boson Angles.

 

 

3. Getting CP Violation Phase Angle for Boson

 

δ CP Boson X ( 3 / 2 ) = approx Σ Boson + Σ Graviton ( CP Angle for Boson X ( 3 / 2 ) equals to the sum of the Boson and Graviton angles )

δ CP Boson X ( 3 / 2 ) = 102.8371 deg + 90.5494 deg = 193.3865 deg

solving for δ CP Boson:

δ CP Boson = 128.92433 deg = 2.250154 radians

This second triplet relates CP Boson Angle and the sum Boson and Graviton (similar to the first triplet - CP Neutrino and the sum of the Neutrino and Quark).

In this case, Boson goes together with Graviton.

 

 

4, Getting CP Violation Phase Angle for Graviton:

 

By analogy,

δ CP Graviton X ( 3 / 2 ) = approx Σ Neutrino ( CP Angle for Boson X ( 3 / 2 ) equals approx the sum of neutrino angles )

δ CP Graviton X ( 3 / 2 ) = 257.8801 deg

solving for δ CP Graviton 

δ CP Graviton = 171.92007 deg = 3.000571 radians

Second pair - CP Graviton and the sum of Neutrino Angles. 

The first pair was Quark and Boson.

 

Summary of the relation between the four elements:

 

1. Neutrino, Neutrino + Quark, i.e. triplet

3, Boson, Boson + Graviton, i.e. triplet

2. Quark, Boson, i.e. pair

4. Graviton, Neutrino, i.e. pair

 

 

Some simple properties ( the sums and differences of CP Angles) for matter/antimatter angles:

 

δ CP Quark = 68.77852 deg = 1.200412 rad 

δ CP Neutrino = 232.20881 deg = 4.05281 rad 

δ CP Boson = 128.92433 deg = 2.250154 radians

δ CP Graviton = 171.92007 deg = 3.000571 radians

 

 

δ CP Quark + δ CP Graviton = 68.77852 deg + 171.92007 deg = 240.69859 deg = 4.200983 radians

δ CP Graviton - δ CP Quark = 171.92007 deg - 68.77852 deg = 103.14155 deg = 1.800160 radians

 

δ CP Neutrino + δ CP Boson = 232.20881 deg + 128.92433 deg = 361.13314 deg = 6.302962 radians

δ CP Neutrino - δ CP Boson  = 232.20881 deg - 128.92433 deg = 103.28448 deg = 1.802654 radians

 

This much for now. Next Fortran source code. But before Fortan - calculating of exact values of the CP Violation Phase Angles of Boson and Graviton, as well as getting their "Quantum Fractions".

Comments powered by CComment