20 August 2019 AD; St Bernard of Clairvaux
Fortunately, there is a way of getting all the CP Violation Phase Angles. When you look closely at CP Violation Phase Angles of Neutrino and Quark ( known to science ), and the sum of all the angles ( 3 + 3 ) for each category ( i.e. for Quarks, Neutrinos, and then for Bosons and Gravitons ), you can notice the order in their relation.
1. Starting with Neutrino:
δ CP Neutrino X ( 3 / 2 ) = Σ Neutrino Angles ( sum of Neutrino Angles ) + Σ Quark Angles ( sum of Quark Angles )
( 232.20881 deg = 4.05281 rad ) X ( 3 / 2 ) = 348.31322 deg = 257.8801 deg + 90.47056 deg
348.31322 deg approx = 348.35066 deg
Left-Hand Side approx equals to Right-Hand Side
So, this is the first triplet - CP Neutrino and the Sum of Neutrino and Quark ( they go together for some reason ).
2. Quark:
δ CP Quark X ( 3 / 2 ) = approx Σ Boson ( CP Angle for Quark equals to the sum of the angles for Boson)
( 68.77852 deg = 1.200412 rad ) X ( 3 / 2 ) = approx 102.8371 deg
103.16778 deg = approx 102.8371 deg
This pair is a relation of CP Quark and the sum of Boson Angles.
3. Getting CP Violation Phase Angle for Boson
δ CP Boson X ( 3 / 2 ) = approx Σ Boson + Σ Graviton ( CP Angle for Boson X ( 3 / 2 ) equals to the sum of the Boson and Graviton angles )
δ CP Boson X ( 3 / 2 ) = 102.8371 deg + 90.5494 deg = 193.3865 deg
solving for δ CP Boson:
δ CP Boson = 128.92433 deg = 2.250154 radians
This second triplet relates CP Boson Angle and the sum Boson and Graviton (similar to the first triplet - CP Neutrino and the sum of the Neutrino and Quark).
In this case, Boson goes together with Graviton.
4, Getting CP Violation Phase Angle for Graviton:
By analogy,
δ CP Graviton X ( 3 / 2 ) = approx Σ Neutrino ( CP Angle for Boson X ( 3 / 2 ) equals approx the sum of neutrino angles )
δ CP Graviton X ( 3 / 2 ) = 257.8801 deg
solving for δ CP Graviton
δ CP Graviton = 171.92007 deg = 3.000571 radians
Second pair - CP Graviton and the sum of Neutrino Angles.
The first pair was Quark and Boson.
Summary of the relation between the four elements:
1. Neutrino, Neutrino + Quark, i.e. triplet
3, Boson, Boson + Graviton, i.e. triplet
2. Quark, Boson, i.e. pair
4. Graviton, Neutrino, i.e. pair
Some simple properties ( the sums and differences of CP Angles) for matter/antimatter angles:
δ CP Quark = 68.77852 deg = 1.200412 rad
δ CP Neutrino = 232.20881 deg = 4.05281 rad
δ CP Boson = 128.92433 deg = 2.250154 radians
δ CP Graviton = 171.92007 deg = 3.000571 radians
δ CP Quark + δ CP Graviton = 68.77852 deg + 171.92007 deg = 240.69859 deg = 4.200983 radians
δ CP Graviton - δ CP Quark = 171.92007 deg - 68.77852 deg = 103.14155 deg = 1.800160 radians
δ CP Neutrino + δ CP Boson = 232.20881 deg + 128.92433 deg = 361.13314 deg = 6.302962 radians
δ CP Neutrino - δ CP Boson = 232.20881 deg - 128.92433 deg = 103.28448 deg = 1.802654 radians
This much for now. Next Fortran source code. But before Fortan - calculating of exact values of the CP Violation Phase Angles of Boson and Graviton, as well as getting their "Quantum Fractions".
Comments powered by CComment